Residential Energy in Context

Just Enough Thinking About Just
The Right Things

Energy Efficiency Considerations

- Energy Consumption Patterns
- Residential Energy Choices
- Some Ideas About Good Building
- Energy Auditing
- Conclusion

Energy Use: World Totals

Energy Use: World Per Capita

Energy Use: World Per Capita

The construction and operation of buildings consumes over a third of the world's energy consumption, and 40% of all the mined resources.

Buildingscience.com

Energy Use: US Flow

Energy Use: Residential

Source: US EIA

Regional, Local, Site Issues

- Climate Characteristics:
 - HDD, CDD
 - Insolation
- Siting:
 - N-S vs. E-W Orientation
 - Trees
- Building Characteristics
 - Corners
 - Cantilevers
 - Roof

Our Region

Source: US DOE

Our Region

Source: BuildingSciences.Com

Changing Ideas About Energy Efficiency

Building Technologies Change With:

- Better Science & Understanding
- New/Newly Applied Materials
- New Expectations

Some Ideas About Good Building

- Air Infiltration
- Hot Roofs
- Crawl Spaces
- Ventilation & IAQ
- Heating & AC
- Hot Water
- Fuel Choices

Heating Our Homes

Source: US EIA

Air Leaks

- Air Barriers vs. Vapor Barriers
- Wind & Stack Effect
- Ventilation Fan Depressurization
- Duct Systems & Envelopes

Air Leaks

Water Intrusion

- Holes
- Permeance
- Condensation & Dew Points

- Vapor Ventilation
 - Structural Complexity
- Hot Roof Approach

- Framing Complexities
 - Hips
 - Valleys
 - Jack Rafters
- Attic vs. RoofVentilation

Crawl Spaces

- Moisture
 - Vented vs. Conditioned Space
 - Vapor Barrier & Rat Slab
- Dehumidifiers

Ventilation & IAQ

- The Costs of Ventilation
- Energy Recovery Ventilators
- Counter-flow Heat Exchangers

Heating & AC

- Distribution Systems
- System Efficiency vs. Combustion Efficiency
- Chimneys

Heating & AC

- Distribution Systems
 - Hydronic
 - Convective
 - Radiant
 - Forced Air
 - 2-fer
 - Mini-splits

Energy Use: Gas Heating

Figure 3.2. National Average Gas Space Heating Consumption -- All House Types

Energy Use: Electric Heating

Figure 3.4. National Average Electric Space Heating Consumption -- All House Types

Water Heating

- Tank vs. On-Demand
- Direct Vent
- SolarThermal
- GFX Drain Waste Heat Recovery

Energy Use: Water Heating

Table 4.1. Characteristics of water heaters													
		Stock	Stock 1993	New	New	Heat Pump							
Units		1990	w/1990 stds	late 1980s	1990	Water Heater							
Energy Factors	Energy Factors												
Electricity	%	82%	83%	84%	88%	189%							
Gas	%	49%	50%	49%	54%	_							
Oil	%	46%	46%	47%	51%	-							
Standby losses													
Electricity	Wh.th/hr	97	89	86	57	10							
Electricity	Btus.th/hr (site)	332	303	294	194	34							
Gas	Btus.th/hr	1576	1453	1510	1125	-							
Oil	Btus.th/hr	1576	1453	1510	1125	-							
Recovery efficiency													
Electricity	%	98%	98%	98%	98%	193%							
Gas	%	76%	76%	76%	76%	-							
Oil	%	76%	76%	76%	76%	-							

Fuel Choice

- Regional Availability & Common Usage
- Fossil Fuels
- Biofuels
 - Energy Balance
 - Carbon Cycling
- SolarThermal
- Geothermal

Energy Metrics

	Cost of Fuels Comparison											
į		Cost		Units	Efficiency	\$/N	/IMB tu	Heating				
	Oil	\$	2.25	Gallon	78%	\$	21	\$	1,957			
y	Electric	\$	11.00	kWh	100%	\$	32	\$	3,062			
	Propane	\$	1.90	Gallon	78%	\$	27	\$	2,568			
	Natural Gas	\$	1.50	Therm	80%	\$	19	\$	1,781			
	Pellets or Com	\$1	185.00	Ton	70%	\$	16	\$	1,557			
	Coal	\$1	195.00	Ton	70%	\$	10	\$	953			
	Hardwood	\$1	135.00	Cord	70%	\$	8	\$	732			
	Softwood	\$1	100.00	Cord	70%	\$	9	\$	841			

- Analysis vs. Action: Project Scale
- Blower Doors
- Thermal Imaging

Energy Auditing

Blower Doors

Energy Auditing

Thermal Imaging

Conclusion

- Educate Yourself! (& Build a Team)
- "Build Tight, Ventilate Right"
- Scale Research & Design to the Project
- Bring Holistic Energy Considerations in on Day 1, or ASAP

Resources

- buildingscience.com
- solar-rating.org
- gfxtechnology.com